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AbstracL The struchue and some thermodynamic properties of iron, cobalt and nickel are 
investigated in the framework of integra-equation lheoty with the hybridized mean spherical 
approximation. A lmal form factor. which combines lhe empty-core model and sd mixing 
through an inverse scattering approach. is used to deduce effective-pair potentials suitable 
for lransition metals via the second-order pseudopotential perturbation method The resulting 
intemal energy and thermodynamic quantities, necessary to achieve thermodynamic self- 
consistency, contain in addition a d-band contribution expressed by the Friedel rectangular 
model for the density of d slates. ?he calculated structure hctors S(q) of Fe, CO and Ni n e x  
the melting point are found to be in good agreement with experiment and the energies, obtained 
self-consistently, coincide reasonably well with other published theoretical dua. 

1. Introduction 

The modelling of interionic interactions for transition metals is a long-standing problem, and 
it remains a problem of interest. Impressive progress has been made in the past ten years, 
and different lines of attack have appeared (see, for example, Alonso and March [ 11 and 
references therein). Effective-pair potentials, deduced from some of these models, have been 
a starting point for recent theoretical works on the liquid transition metals [2-6]. Most of 
the systematic studies have been based on the model of Wills and Harrison (WH) [7]. These 
authors proposed a scheme involving a separate treatment of s and d electrons and including 
s-d hybridization. The resulting simple expression of the internal energy has been used, in 
conjunction with various methods of liquid state theory, to probe thermodynamics [8,9] as 
well as structure [lo, 111. Despite real success in the solid state, the latter authors reported 
that the WH model fails to yield reliable shcture factors, S(q) ,  for the early 3d metals. 
For them, the problem lies on the position and the depth of the potential wells, which are 
respectively too shifted towards short distances and too deep. It is worth mentioning that 
the potentials developed by Moriarty [12,13] within the model generalized pseudopotential 
theory (MGPT), which work fairly well for solid state properties. have similar drawbacks 
to the WH models. As an illustration, Moriarty 1141 has obtained molten states, at normal 
density, only above 3528 K, in the case of molybdenum. The liquid state properties can 
therefore be seen to be quite severe tests for potentials, since their overall shape is needed. 

Recently, Bretonnet and Silbert [ 151 (BS) have derived a simple electron-ion interaction 
model suitable for transition metals. It jointly accounts for (i) the nearly-free-elecaon 
contribution via the Ashcroft [I61 empty-core model and (ii) the s-d mixing inside the 
core region through an inverse scattering approach. The analytical form factor can then be 
treated in second-order perturbation theory to get an effective-pair potential. It has been 
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tested on the liquid structure of the 3d series by applying the Gibbs-Bogoliubov variational 
scheme with a charged hard-sphere reference system [I71 as well as by using the variational 
modified hypernetted chain (VMHNC) integral equation [IS, 191. The good agreement of 
the results with experiment attests that the BS potential, albeit coming from a simplified 
approach, possesses the right features for a liquid-state description of transition metals [ 171. 
It is well known that interactions in systems like liquids are dominated by the short-range 
pair forces. Therefore, provided that the effects of the d electrons are taken into account, we 
believe that effective-pair potentials are sufiicient to treat the structure of liquid transition 
metals. 

In this paper, we present the results for the structure as well as the thermodynamic 
properties of iron, cobalt and nickel. For this purpose, we expect the internal energy (written 
as a volume term and a sum of effective-pair interactions), which arises from the second- 
order perturbation method by using the 8s form factor, to be supplemented by a contribution 
coming from the d band. The latter is expressed by using the Friedel [20] rectangular 
model for the density of d states. To determine the pair-correlation function and the 
thermodynamic properties resulting from the above internal energy, we use integral-equation 
theory with the closure relation of Zerah and Hansen [21] called the hybridized mean 
spherical approximation (HMSA). The latter, which ensures thermodynamic self-consistency 
(TSC) between the virial and compressibility equations of state, allows one to treat liquid 
structure and thermodynamics on the same footing. It has proven to be successful for 
simple liquids f21.221 and for alkali metals [23-2-51, Moreover, since efficient numerical 
algorithms [27,2SJ have been built, solving integral equations is computationally no more 
costly. Preliminary structure calculations with the soft-core mean spherical approximation 
(SMSA) and the VMHNC by Bhuiyan and co-workers [IS, 191 have encouraged us to tackle 
thermodynamics from the HMSA as well. 

In section 2, we outline the theoretical basis of our work, which is twofold. On one 
hand, we give the effective-pair potentia1 for transition metals; on the other hand, we 
briefly present the HMSA and the thermodynamic quantities playing an important role in the 
achievement of the TSC. In section 2, we compare the results of the structure factors and 
pair-correlation functions with molecular dynamics (MD) results and discuss the behaviour 
of some thermodynamic quantities for iron, cobalt and nickel. In section 4 we present our 
conclusions. 

N Jakre and J L Bretorutei 

2. Theory 

2.1. The BS pseudopotential and effective-pair potential 

In transition metals, the tightly bound d electrons hybridize with the nearly-free electrons and 
form a partially filled d band, crossing the Fermi energy. This situation has been a serious 
impediment to the use of the pseudopotential perturbation method because of d resonance. 
The latter, completely defined by the 62 scattering phase shift as a function of energy E ,  
behaves as ~~~ 

l- 

where &d is the resonance energy corresponding to the d-band centre and r is related to the 
d-band width. Bretonnet and Silbert [I51 treat the sp states by the Ashcrofi [I61 empty- 
core model of core radius Rc as w, although they take account of the s-d mixing by an 
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approximate potential, U&), inside the core. We term us( r )  is represented by the first 
two terms of (1) expanded as a Dirichlet series of short-range exponential functions. The 
supcrposition of these two potentials results in the following expression: 

r > Rc. 

All quantities are expressed in Hartree atomic units (m = h = e = I); Z, represents the 
effective number of conducting electrons per ion. For transition metals, it takes non-integer 
values [ 121 to account for hybridization. If we denote by Z ( =  Z S + Z d )  the number of s and 
d electrons of the free atom, Z ,  will be the number of remaining d electrons per ion in the 
metal, which do not participate in conduction. Continuity of w(r )  and its first derivative at 
r = R, is required, thus defining 51 and 52:  

B I  = 2 Rc (I - g) exp( $) 
and 

(3) 

The weakness of w ( r )  allows a second-order perturbation treatment. Consequently, the 
local form factor 

obtained by Fourier transformation of (Z), where 

gives rise to an effective-pair potential taking the standard form: 

In equation (7) FN(q) is the normalized energy-wavenumber characteristic, written as 

which includes screening via the dielectric function ~ ( q )  and its related local field correction, 
G(q) ,  given by Ichimaru and Utsumi [29]. The potential u(r)  contains three parameters: 
the core radius R., the softness parameter a and the number of conducting electrons Z,. In 
the next section we discuss in detail their numerical values for each system. 
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2.2. Liquid slate theory 

2.2.1. Integral equations. Central to the theory of simple liquids is the pair-correlation 
function, g( r ) ,  which can be related to the direct correlation function, c ( r ) ,  through the 
Ornstein-Zernike [30] (02) equation: 

N Jnkre and J L Bretonnet 

g(r) - 1 - c(r) = p d3r'(g(r') - l)c(lr - r'l) = y(r) (9) s 
which is taken as a definition. The number density, p ,  is related to the electronic density n by 
n = p Z , .  The integral-equation method consists in solving the oz equation in conjunction 
with an approximate closure relation [31]. In this work, we choose the hybridized mean 
spherical approximation (HMSA) of Zerah and Hansen [21]: 

where B = l/ksT, with T and kg being respectively the temperature and the Boltzmann 
constant. According to Weeks and co-workers [321, the effective-pair potential may be 
written as u(r) = u,(r )  + uT(r), where 

represents its repulsive short-range part, and 

is its weak long-range attractive part, ro being the position of the principal minimum of u(r). 
The HMSA, given by ( IO) ,  interpolates between two standard closure relations by means of 
the variation of fo. the mixing parameter. When fo tends to zero, the HMSA reduces to the 
SMSA [33], and when fo = 1 it becomes the hypemetted chain (HNC). The interpolation is 
carried out to achieve thermodynamic self-consistency (TSC), which consists in finding the 
equality between the isothermal compressibilities coming from two independent methods 
(see EgelstafF 1341). On the one hand we take the well known compressibility route: 

P ~ B T X T  = S(0) (13) 

where S(0) is the long-wavelength limit of the structure factor. On the other hand we use the 
derivative with respect to density of the vinal pressure P expressed in the grand-canonical 
ensemble of partition functions E by 

where U N  is the N-particle potential energy for a system of volume V .  A detailed description 
of the above two thermodynamic relations, for the case of transition metals, is given in the 
next subsection. 

For a given fo, the system formed by (9) and (IO) is solved numerically by employing a 
fast algorithm due to Labik and co-workers 1281, which takes advantage of the combination, 
primarily proposed by Gillan [27], of the Newton-Raphson and successive substitution 
methods. 
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2.2.2. Thermodynamic properties. The second-order pseudopotential perturbation method 
gives a contribution to the total potential energy, UN, that depends only upon the volume of 
the metal plus a sum of effective-pair potentials (see, for example, Ashcroft and Stroud [35] 
and Finnis 1361). It results in a term 

WP) = Ees - + W = 0) (15) 

where Ecg and Beg are respectively the energy and the bulk modulus of the homogeneous 
electron gas. The last term is one half the electrostatic energy between the ion and its 
surrounding cloud; it is 

where U&J) represents the energy arising from the Z, conducting electrons per ion. To 
complete the potential energy of a transition metal, we have to include the effects of 
the remaining zd electrons. Following WH, it can be approximately accounted for by a 
contribution 

where rd is the so-called d-state radius and D is the nearest-neighbour separation (the 
coordination number is taken to be 12). Equation (17) is derived by combining the treatment 
of the overlap between d states on different ion sites with the Friedel [20]  rectangular model 
for the density of d states, nd(E),  (= 1 O / w d  if E d -  Wd/2 < E c &d+ w d / 2 ,  and 0 otherwise, 
where Wd is the d-band width). The first term, Eb, is a bonding energy proportional to the 
filling of the d band across the transition series and the second, E,, is a correction due to 
the shift of the d-band centre of gravity. Finally, the internal energy per ion is 

The first term of the right-hand side of (18) is the kinetic energy and the last term is the 
structure-dependent energy corresponding to the sum of pair interactions. 

By means of (18). the virial pressure is derived from (14) to get 

The different volume terms are as follows: 

and the structure-dependent term Pj-i, is divided into two parts: 

P" d -1 =2*pz  g( r ;  p)rzdr. 
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This formulation is due to Hasegawa and Watabe [37] for the case of simple metals, and we 
have extended it to transition metals by adding Pa, the d-band contribution to the pressure. 

We now tum to the bulk modulus. As pointed out in the previous subsection, it can be 
obtained by the compressibility route: 

N Jakse and J L Bretonnet 

as well as by the vinal equation of state, which is at present given by (19): 

where 

The term Bi-i contains all the terms arising from the derivation with respect to the density 
of P/-i and P,'Li: 

(28) B.  . - 2- 
I - ,  - 

P 

where 

(29) 

(30) 

(31) 

rp  a2u(r;  P ) ~ ~  

,a2u(r;  ddr 
ap2 

r Z g ( r ;  P), spar 

BZ =  BP / r2g( r :  P)P 

B3 = -2ngp 1 r z I - -  ag(r .  P )  r au(r;  P ) ~ ~  

B4 = 2npp2 j r"-p- -ag;; P )  w; P ) ~ ~ ,  

ap 3 ar 

(32) 
a p  

Note that, if the density dependence of the pair potential, the volume terms and the effect 
of the d band are dropped, expression (25) reduces to that of simple liquids 134). 

3. Results and discussion 

3.1. Fining of the parameters 

The input data for iron, cobalt and nickel are listed in table 1. The first two columns report 
the thermodynamic states, given by V/(N) and T, under which the systems are investigated. 
These correspond to states just above the melting point. 
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Table 1. Input data of the calculations: atomic volume V / ( N ) ,  temperature T, effective 
valence Z,. pseudopatential parameten (1 and R,. TSC parameter fo, number of d elccmons 
zd ,  interatomic distance D and d-state radius rd. 

V / ( N )  (au3) T (K) Z, a (au) Rc (au) fu Zd D (am) rd (au) 
Fe 89.35698 1833 1.4 0.363 1,540 0.272 6.6 4.692 1.512 
CO 85.83720 1823 1.4 0.393 1.641 0.490 7.6 4.739 1.437 
Ni 85.29530 1773 1.4 0.207 1.030 -0.076 8.6 4.711 1.342 

We have consmcted the pair potentials by specifying the three parameters Z,, a and 
Re. To choose the effective valence, Z,, we follow the prescriptions of Moriarty [12,13]. 
His self-consistent calculations of Z,, Z,j and EF (the Fermi energy) have given Z, values 
situated in a narrow range 1.1 c Z, < 1.7 for the 3d and 4d transition metals. Therefore, 
we take in all cases a typical value of 1.4, thus fixing the number of d electrons, &, since 
Z = Z, + Zd is a constant. 

The parameter a has an influence on the softness of the potential u(r). A larger value 
of a gives rise to a softer u(r) without changing the position of its first node. As a 
consequence, the oscillations of the pair-correlation function, g(r), shift towards smaller r 
and damp more rapidly. However a is restricted to the domain 4 < RJa i 5,  preventing an 
unrealistic pair potential. Regarding this restriction, we choose a values that best reproduce 
the oscillations of g( r )  for each system. Bretonnet and co-workers [17], in the framework 
of the GB scheme, have employed a similar adjustment since they choose the values of a 
in order to fit the low-q region of S(q). 

The core radius, R,, is fitted to reproduce numerically the observed isothermal 
compressibility. At the same time, the mixing parameter of the HMsA, fo. is fixed to 
achieve the TSC. This procedure, in which the TsC is obtained at the experimental XT. 

has been previously employed by Bretonnet and Jakse [26] for the alkali metals. In this 
scheme, the pressure calculated by using (19) does not vanish, being in contradiction with 
the experimental conditions. This is a consequence of the pseudopotential theory leading 
to an electronic inconsistency (EI) (see Browman and Kagan [38]) and preventing the two 
equations of state given by (24) and (25) to be fully consistent. Therefore, to reduce the 
effects of the EI as well as of shortcomings of the model and numerical inaccuracies, the 
zero-pressure condition is applied to (25),  which is, finally, rewritten as 

where 

Finally, the two last columns report the values taken by the parameters of the d-band 
energy, namely the nearest-neighbour separation D and the d-state radius rd. For the latter, 
we take those used by WH, which have been fitted to the known d-band width in the solid 
state [39]. We believe that the r,j values can be kept in the liquid state, 

3.2. Structure factors 

In figures I@), 2(a) and 3(a) we present a comparison of our calculated S(q) HhlSA results, 
for Fe, CO and Ni, and the experimental data of Waseda [40], which are, to our present 
knowledge, the only ones that are available in the literature. 
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As we examine the figures, it appears that the low-q region is well reproduced in all 
cases, being a consequence of the fitting to the observed S(0). The oscillations are also in 
good agreement with experiment. For Fe and CO, the position of the main peak is at the right 
place, but for Ni a slight shift towards small q is visible with respect to the experimental 
value. Bhuiyan and co-workers [I91 have also observed this shift with the VMHNC integral 
equation, even by using a different parametrization of the pair potentials. Incidentally, we 
used the local-field correction of Vashishta and Singwi [41] for the screening. The curves are 
indistinguishable on the scale of the plots, particularly in the low-q region as a consequence 
of the TSC procedure. For this reason, these are not shown in the figures. 

However, as a general feature, the height of the principal peak of S(q) is overestimated. 
This could arise from either the error involved in the measurements, cmied  out in the early 
1970s, or as a shortcoming of the BS model. We keep in mind the discussion by Singh and 
Holz [42], who have pointed that the height of the first peak of S(q), for alkali metals, varies 
by about 40% in some cases, due to the different resolutions of the detection systems. On 
the other hand, since the shape of the first peak of S(q) results from the interplay between 
the repulsive part, ut(r), and the attractive part, uZ(r), of the effective-pair potential, it is 
difficult to attribute the discrepancy to the short-range or to the long-range oscillatory part 
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F / *.U. Figurr 2. Same as in figure 1 for Co. 

of u(r). 
Our effective-pair potentials u(r)  possess the so-called Friedel oscillations beyond the 

potential well, which are inherent in metallic systems. It is worth noting that other models, 
describing correctly the structure of liquid transition metals [2,5], do not exhibit these 
oscillations. It would therefore be interesting to compare the two classes of potentials on 
various physical properties. 

The HMSA procedure employed here could also be questioned. Therefore, we performed 
the calculation of the structure by MD simulations. with the same pair potential, in order to 
test the approximation. To this end, we use a cubic cell containing 666 particles, subject 
to periodic boundary conditions. The volume of the box is chosen to reproduce the desired 
liquid density for each system. The initial positions are set randomly and the initial velocities 
are those of a Maxwellian distribution. A phase-space trajectory is then produced in the 
microcanonical NvE ensemble by the standard Valet algorithm in velocity form [44]. The 
typical duration of a run is about 5 x IO4 steps of s. After an equilibration time at 
the right temperature, 300 independent configurations are retained to calculate the average 

In figures I@), 2(b) and 3@), the pair correlation functions, g ( r ) ,  as well as the 
&). 
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2:0 3:e 4.38 ' 0  

associated effective-pair potentials, u ( r ) ,  are presented. The first peak of g ( r )  obtained 
with HMSA coincides fairly well with experiment far Fe, CO and Ni. Its position is always 
at a shorter distance than the position of the corresponding potential well and the mean 
position of the nearest neighbours is situated within the repulsive part of u(r) .  This fact 
gives rise to an important positive contribution to the structuredependent pressure and partly 
accounts for the large values of the bulk modulus of transition metals. For Fe and CO, the 
curves of g(r)  of HMSA compare favourably with those of molecular dynamics while, for 
Ni, there is an appreciable difference that could reveal a weakness of HMSA in this case. 

The HMSA involves two standard integral equations: the SMSA and the HNC. The mixing 
parameter fo measures the degree of contribution of those closure relations. The values 
listed in table 1 are below 0.5, indicating that the SMSA is better able to describe liquid 
transition metals than the BS model., Nevertheless, the very small negative value for Ni 
(fo = -0.076), which is an extrapolated value, could also reveal a weakness of the Bs 
model for Ni. Hausleitner and co-workers [ I l l  have used the HMSA with a modified WH 
model, and report that their results show an HNC-like behaviour, forcing us to remark that 
the kind of integral equations to use depends an  the model potential. Consequently, once 
more one can see that the WH and BS effective-pair potentials are different in nature, 
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Table 2. Contributions to the intemal energy per ion given in ~ ~ a u .  according lo (18). EBD 
stand for the values obtained by BreloMel and Derouiche [9l. 

E d  &a -p-'Bob @(r = O : p )  Ed Em E I W "  EBD/(N) 

Fe 8.71 -67.73 -77.41 -465.89 -138.03 11.99 -728.36 -708.84 
CO 8.66 -64.68 -80.42 -461.06 -85.37 17.89 -664.98 -713.38 
Ni 8.42 -64.18 -80.91 -626.75 -38.86 5.17 -797.12 -725.66 

3.3. Thermodynamic properties 

We come now to OUT results for the thermodynamic properties. In table 2 we present 
the different contributions to the internal energy, E / ( N ) ,  (expressed in au) according 
to (18). The values of E / ( N )  for Fe, CO and Ni are compared to those obtained by 
Bretonnet and Derouiche 191, E E D / ( N ) .  These authors have used a modified WH model 
in the Gibbs-Bogoliubov variational scheme with a hard-sphere reference system. The two 
sets of results coincide within a range of 10%. The ideal part, Eid,  and the structure- 
dependent part, E,, = 2np Jr2u(r)g(r)dr ,  contribute moderately to the internal energy 
(only a few per cent): r$(r = 0, p )  and Ed, which contain the s-d mixing and the d-band 
energy respectively, are the most important contributions to E / ( N ) .  As expected, going 
from Fe to Ni, the d-band fills up and Ed increases. For Ni, it provides the smallest term 
of the negative contributions, while r$(r = 0, p )  becomes the essential term. 

Table 3. Contributions to the pressure corresponding to (19). 

g w p  PPQIP P ~ I P  BP/.JP v z i r p  o p r p  

Fe 1 -21.20 -31.38 11.96 0.21 -39.41 
CO I -21.93 -18.41 15.75 0.75 -22.84 
Ni 1 -47.57 -6.50 8.40 -0.12 -44.79 

In table 3 we present the virial pressure, p P / p ,  and its different contributions expressed 
by (20)-(23). Contrary to the case of internal energy, the volume-dependent and structure- 
dependent parts of the pressure are comparable and of opposite signs for Fe and Co. As a 
result, the large negative values come from the d-band pressure. For Ni, because the d band 
has little influence, p&/p  takes a moderate value and pPo/p  is the most important term. 
Note that, as for simple metals, BP[Li/p arising from the derivative of u ( r )  with respect to 
density is always negligible. 

Finally, in table 4 we list the terms of the bulk modulus written in (33). We recall 
that the self-consistent values of p ( a P / a p ) r  coincide with the experimental ones 1431 since 
these correspond to the fitting of Rc; p a P / a p [ T  is composed of two dominant terms: B3, 
which was the sole important term in the case of alkali metals [26] by using the same 
procedure, and the d-band contribution 8BEJ3. 

Table 4. Contributions IO the bulk modulus gaP/ilpI.r defined in (33). ha1 have been fitted to 
experimental values [431. 

~ , / 3  81 BZ B3 ~4 m Z a Z u d p ) t a p 2  8BEc/3 i w / a p h  = v&xD(~) 
Fe 4.56 -4.80 10.15 18.31 -0.83 1.52 21.09 50.00 
CO 2.70 -4.75 15.07 20.90 0.38 1.72 16.61 52.63 
Ni 24.49 -5.23 6.72 15.10 -2.02 0.13 13.44 52.63 
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4. Conclusion 

In this paper, the structure as well as some thermodynamic properties for iron, cobalt and 
nickel have been studied with the HMSA integral equation. The good agreement of our 
calculated S(q) attests to the fact that this closure relation, which has previously proven 
to be successful for simple liquids and alkali metals, is also valid for transition metals. It 
should therefore be widely applied to various kinds of potentials. Our procedure has also 
provided, in a thermodynamically self-consistent manner, reliable results for thermodynamic 
quantities. These are deduced from the internal energy including, albeit in a simplified 
way, three important features for transition metals: hybridization, s-d mixing and a d-band 
contribution. 

First, we are 
introducing an inversion technique in order to get direct information on the shape of the 
potentials of the transition metals, which can be compared to different types of models. 
Second, we are trying to generalize the HMSA to the case of liquid binary mixtures and 
alloys. 

N Jakre and J L Bretonnet 

We are exploring two possible extensions of the HMSA procedure. 

Acknowledgments 

We are pleased to thank Professor Moises Silbert for useful discussions during the course 
of this work as well as Dr Alain Pasturel for help in  performing the MD simulations. The 
CIRIL. (Cenue Interuniversitaire de Ressources Informatiques de Lorraine) is gratefully 
acknowledged for providing us with computer time. 

References 

[I] Alonso J A and March N H 1989 Electmm in Metals andAlloys (New York Academic) 
[21 Foiles S M 1985 Phys. Rev. B 32 3409 
[3] Adam B J and Foiles S M 1990 Phys. Rev. B 41 3316 
141 Holender J H 1990 Phys. Rev. B 41 8054; 1990 J.  Phys.: Condens. Matter 2 1291 
[5] Do Phuong L. Pasturel A and Nguyen Manh D 1993 J. Pkys.: Cnndenr. Mutter 5 1901 
[61 Kresse C and Hafner J 1993 Pkys. Rcv.~B 48 13 115 
[71 Wills I M and Harrison W A 1983 Pkys. Rev. B 28 4363 
[SI Hausleitner C and Hafner J 1988 J. Phys. F: Met. Phys. 18 1025 
[91 Bretonnet J Land Derouiche A 1991 Phys. Ret,. B 43 8924 

[IO] Remaut C 1989 Z Phys. B 76 179 
[ I l l  Hausleitner Ch, Kahl G and Hafner J 1991 J.  Phys.: Condenr. Matter 3 1589 
1121 Mori* J A 1988 Phys. Rev. B 38 3199 
1131 Moriarty J A 1990 Pkys. Rev. B 42 1609 
[I41 Mori* I A 1994 Pkys. Rev. B 48 12431 
[I51 Bretonnet I L and Silbert M 1992 Phys. Chem. Liquids 24 169 
1161 Ashcrofl N W 1966 Pkys. Lett. 23 48 
[I71 Bretonnet J L, Bhuiyan G M and Silben M 1992 J. Phys.: Condens. Matter 4 5359 
[I81 Bhuiyan G M, Brelonnet J L. Gonzalez L E and Silbert M 1992 J. Phys.: Condens. Matter 4 7651 
[I91 Bhuiyan G M. Brelonnet J Land Silbert M 1993 1. Nun-Crytdline Solids 1.56-8 145 
[ZO] Friedel J 1969 The Physics of Metals I :  Electrons ed J M Ziman (Cambridge Cambridge University Press) 
[21] ZemJ G and Hansen J P 1986 J.  Chem. Phys. 84 2336 
[22] Bretonnet I L and Jakse N 1992 Phys, Rev. B 46 5717 
[23] Pastore G and Kahl G 1987 J. Pkys. F: Met. Phys 17 L267 
[24] Kahl G and Pastore C 1988 Eumphys. Lett. 7 Y7 
[E] Lai S K, Li W and Tosi M P 1990 Phys. Rev. A 42 7289 



Structure and thermodynamics of liquid transition metals 3815 

Bretonnet J Land Jakse N 1994 Phys. Rev. B 50 2880 
Cillan M J 1979 Mol. Phys. 38 1781 
L&k S. Malijevskp A and Vonka P 1985 Mol. Phys. 56 709 
lchimaru S and Utsumi K 1981 Phys. Rev. B 24 7385 
Omstein L S and Zemike F 1914 Proc. Akad Sri. 17 793 
Hansen 1 P and McDonnald I R 1986 Theory of Simple Liquids (New York, Academic) 
Weeks D. Chandler D and Andersen H C 1970 J. Chem. Phys. 54 4931 
Chiham J 1973 Pmg. Theor. Phys. 50 I156 
Egelstm P A 1992 An Inlroductiun IO fhe Liquid Sfme (Oxford: Clmendon) 
Asheron N W and Stroud D 1978 Solid Stale Physics 33 1 
Finnis M W 1974 J.  Phys. F: Met Phys. 4 1645 
Hasegawa M and Watabe M 1972 I Phys Soc. Japan 32 14 
Brovman E C and Kagan Y 1970 So”. Phys.-JETP 30 721 
Harrison W A and Froyen S 1980 Phys. Rev B 21 3214 
Waseda Y 1980 The Sfrmture of Non-Crymlline Maierio1.s (New York: McCnw-Hill) 
Vashishta P and Singwi K S 1972 Phys Rev. B 6 875 
Singh H B and Halr A 1983 Phys. Rev.B 28 1108 
ltami T and Shimoji M 1984 J. Phys. F: Me!. Phys. I4 L15 
H e e m n  D W 1990 Computer Simuiorion Merho& in Theoretical Physics 2nd edn (Berlin: Springer) 


